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Abstract 

The development of semidistributed hydrological models that reflect the dominant processes controlling streamflow spatial 

variability is a challenging task. This study addresses this problem by investigating the case of the Thur catchment 

(Switzerland), an alpine and pre–alpine catchment that, while having a moderate (1702 km2) extension, presents a large 

spatial variability in terms of climate, landscape, and streamflow (measured at 10 subcatchments). The methodology for 15 

model development consists of a two–stages approach. In a first stage, we use correlation and regression analysis to identify 

the main influencing factors on the spatial variability of streamflow signatures. Results of this analysis show that 

precipitation (rainfall or snow) controls signatures of seasonality and water balance, while landscape characteristics 

(especially geology) control signatures of hydrograph shape (e.g. baseflow index and flashiness index). In a second stage, we 

use the results of the previous analysis to develop a semidistributed hydrological model that is consistent with the data. 20 

Model experiments confirm that only hydrological models that account for the heterogeneity of precipitation and geology 

produce hydrographs that have signatures similar to the observed ones. These models provide consistent results in space–

time validation, which is promising for prediction in ungauged conditions. The presented methodology can be transferred to 

other case studies, since the data used in this work (meteorological variables, streamflow, morphology and geology maps) is 

available in many regions around the globe. 25 

1 Introduction 

Hydrographs are affected by meteorological forcing and landscape characteristics (e.g. topography, land use, etc.) and, 

therefore, they synthetize the hydrological response of a catchment. Because of the spatial variability of landscape and 

climate characteristics, hydrographs can differ substantially between catchments. Being able to quantify and explain 

hydrograph spatial variability is important both to improve processes understanding and to make predictions useful for many 30 
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human activities, such as flood protection, drinking water production, agriculture, energy production, and riverine 

ecosystems management (e.g., Hurford and Harou, 2014). 

Understanding catchment differences and, more specifically, how to transfer hydrological knowledge, methods, and theories 

from one place to another, is a common objective of many research areas in hydrology, including comparative hydrology 

(e.g., Falkenmark and Chapman, 1989), model regionalization (e.g., Parajka et al., 2005), catchment classification (e.g., 5 

Wagener et al., 2007), and prediction in ungauged basins (e.g., Hrachowitz et al., 2013). In the case of streamflow, the 

attempt to explain its spatial variability is typically accomplished either using statistical approaches, which try to regionalize 

some characteristics of the hydrograph (streamflow signatures), or using hydrological models that incorporate relevant 

spatial information. In particular, statistical approaches such as regression (e.g., Berger and Entekhabi, 2001; Bloomfield et 

al., 2009) and correlation (e.g., Trancoso et al., 2017), or machine learning techniques like clustering ( e.g.,  Sawicz et al., 10 

2011;  Toth, 2013; Kuentz et al., 2017) are used to extrapolate the signatures where unknown and to group together 

catchments that present similar characteristics. Such approaches have been useful to quantify the hydrological variability and 

identify its principal divers. However, they are often not designed to discover causality links and can be affected by 

multicollinearity, that arises when multiple factors are correlated internally and with the target variable (Kroll and Song, 

2013). 15 

By incorporating spatial information about meteorological forcing and landscape characteristics, distributed hydrological 

models have the ability to reproduce the mechanisms that influence hydrograph spatial variability. However, identifying the 

relevant mechanisms is challenging. One possibility is to be as inclusive as possible in accounting for all the catchment 

properties that are, in principle, important in controlling catchment response. However, this approach leads to models that 

tend to be data demanding and contain several parameters. For example, Gurtz et al. (1999) considered several landscape 20 

characteristics (elevation, land use, etc.) in their application of a semidistributed model to the Thur catchment (Switzerland), 

which resulted into a model with hundreds of hydrological response units (HRUs) that were defined a–priori based on the 

complexity of the catchment. The other option is to try to identify the most relevant processes and neglect others, by tuning 

the distributed hydrological model to the available data. For example, Fenicia et al. (2016) compared various model 

hypotheses to determine an appropriate discretization of the catchment in HRUs and appropriate structures for different 25 

HRUs. However, in their work, the space of plausible hypotheses could be constrained by a good experimental 

understanding of the area, which is not always available. 

Convincing model calibration–validation strategies are essential to provide confidence that the model ability to fit 

observations is a reflection of model realism and not a consequence of calibrating an overparameterized model (e.g., 

Andréassian et al., 2009). A common approach for calibration of semidistributed models is the so called ‘sequential’ 30 

approach, where subcatchments are calibrated sequentially from upstream to downstream (e.g., Verbunt et al., 2006; Feyen 

et al., 2008; Lerat et al., 2012; De Lavenne et al., 2016). Although this approach may provide good fits and therefore has its 

practical utility where data is available, it does not provide understanding into the causes of streamflow spatial variability 

and results into models that are not spatially transferable. Moreover, such models are prone to contain many parameters, as 
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each subcatchment would be represented by its own parameters set. Alternative calibration–validation approaches that 

enable model validation not only in time but also in space are conceptually preferable, particularly when the modeling is 

used for process understanding or prediction in ungauged locations (e.g., Wagener et al., 2004; Fenicia et al., 2016). 

This study combines the strengths of catchment regionalization approaches and distributed hydrological models by first 

using regionalization studies to understand the main causes of variability of streamflow signatures, and then using this 5 

analysis to inform the structure of a distributed hydrological model. In particular, the objectives of the study are to: (1) 

explore the spatial variability present in the Thur catchment regarding landscape characteristics, meteorological forcing and 

streamflow signatures; (2) find which characteristics explain the variability of the hydrological response; (3) based on this 

analysis, build a semidistributed hydrological model that considers only features that actually contribute to the spatial 

variability; (4) validate model assumptions against competing alternatives. 10 

The paper is organized as follows: Section 2 presents the study area and gives information about data collection and 

availability; Section 3 and Sect. 4 are both divided in methods and results and present, respectively, the correlation and 

regression analysis and the modeling part of this paper; Section 5 puts the results of this work in prospective, comparing 

them with other studies; Section 6, finally, summarizes the main conclusions. 

2 Study area 15 

This study is carried out in the Thur catchment (Fig. 1), located in north–east of Switzerland, south–west of the Lake 

Constance. With a total length of 127 km and a catchment area of 1702 km2, the Thur is the longest Swiss river without any 

natural or artificial reservoir along its course. Due to this characteristic, it is a very dynamic river, where the streamflow can 

change of two orders of magnitude in a few hours (Schirmer et al., 2014). 

The Thur catchment has been subject of several studies in the past; Gurtz et al. (1999) did the first modelling study on the 20 

entire catchment using a semidistributed hydrological model; Abbaspour et al. (2007) modelled hydrology and water quality 

using the SWAT model; Fundel et al. (2013) and Jorg-Hess et al. (2015) focused on low flows and droughts; Jasper et al. 

(2004) investigated the impact of climate change on the natural water budget. Other modelling studies include also Melsen et 

al. (2014) and Melsen et al. (2016), which investigated parameters estimation in data limited scenarios and their 

transferability across spatial and temporal scales, and Brunner et al. (2019) that studied the spatial dependence of floods. The 25 

Thur includes also a small–size experimental subcatchment (Rietholzbach, called Mosnang in this paper after the name of 

the gauging station) that was subject of many field studies (e.g., Menzel, 1996; Gurtz et al., 2003; Seneviratne et al., 2012; 

von Freyberg et al., 2014; von Freyberg et al., 2015). 

The topography of the catchment is presented in Fig. 1b; the elevation ranges between 356 m a.s.l. at the outlet and 2502 m 

a.s.l. at Mount Säntis. The majority of the catchment lies below 1000 m a.s.l (75 %) and only 0.6 % is above 2000 m a.s.l. 30 

(Gurtz et al., 1999). Based on topography Fig. 1b, the catchment can be visually subdivided into two distinct regions: the 

northern part, with low elevation and dominated by hills and flat land, and the southern part, that presents a mountainous 
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landscape. Such topographic variability suggests the presence of different dynamics in precipitation (type and quantity) and 

routing. 

The land use (Fig. 1c) is dominated by pasture and sparse vegetated soil (60 %) and forest (25 %); urbanized and cultivated 

areas are located mainly in the north and cover, respectively, the 7 % and the 4 % of the catchment.  

Most of the catchment is underlain by conglomerates, marl incrustations and sandstone (Gurtz et al., 1999). For the purpose 5 

of this study, the geological formations have been divided into 3 classes (Fig. 1d): “consolidated”, covering mainly the 

mountainous part of the catchment, “unconsolidated”, located in the north, and “alluvial”, located in the proximity of the 

river network, mainly in the plateau area; the latter formation constitutes the main source of groundwater in the region 

(Schirmer et al., 2014). The soil depth (Fig. 1e) is shallower in the mountainous part of the catchment and deeper in the 

northern part.  10 

Based on the availability of gauging stations, the catchment was divided in 10 subcatchments (Fig. 1a), with a total drained 

area that ranges between 3.2 km2 (Mosnang) and 1702 km2 (total catchment area). Streamflow time series are obtained from 

the Federal Office for the Environment FOEN and the data is available from 1974 to 2017 but is used only form 1981 to 

2005 to match the precipitation, temperature, and potential evapotranspiration (PET) time series. In the considered range, the 

streamflow data are relatively continuous, with two gaps, one in St. Gallen, from 31 December 1981 to 01 January 1983, and 15 

the other one in Herisau, from 31 December 1982 to 09 May 1983. 

The meteorological data is obtained from the Federal Office of Meteorology and Climatology MeteoSwiss. Precipitation and 

temperature are interpolated, as done in Melsen et al. (2016), with the pre–processing tool WINMET (Viviroli et al., 2009) 

using, respectively, inverse distance weight (IDW) and detrended IDW; while the first method considers only the horizontal 

variability (related to the distance from the meteorological stations), the second adds a vertical component to the variability 20 

related with the elevation (Garen and Marks, 2001). PET data is then obtained, as done in Gurtz et al. (1999), starting from 

meteorological and land use data, using the Penman–Monteith equation (Monteith, 1975), implemented as part of the 

hydrological model PREVAH (Viviroli et al., 2009). All these values are calculated at pixel (100 m) scale and then averaged 

over the subcatchments. All the time series are used at daily time step, aggregating the available hourly data. 

The raw maps (topography, land use, geology, and soil) are obtained from the Federal Office of Topography swisstopo. 25 

Visualization and processing is performed using Qgis 2.18.  

3 Identification of influencing factors on the spatial variability of streamflow signatures 

3.1 Methodology 

The purpose of the analysis presented in this section is to understand the influence of climatic conditions and landscape 

characteristics on streamflow. Climatic conditions are represented by precipitation and potential evaporation data. Landscape 30 

characteristics are presented by maps of topography, land use, geology and soil. 
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Climatic conditions, landscape characteristics and streamflow are represented through a set of indices, designed with the 

intention of being representative of the underlying data. In the following, indices calculated based on streamflow data will be 

called “signatures”, as is often done in catchment classification literature (e.g., Sivapalan, 2006). Dependencies between 

streamflow signatures and other indices are assessed through a regression analysis. The signatures used are illustrated in 

Sect. 3.1.1, the regression analysis between streamflow signatures and the other indices is explained in Sect. 3.1.2, and the 5 

guidelines for interpretation are given in Sect. 3.1.3. 

3.1.1 Catchment indices for representing streamflow, climate, and landscape 

Streamflow signatures (𝜁𝜁) and meteorological indices (𝜓𝜓) were obtained using streamflow, precipitation, and PET time 

series at daily time step. The values were calculated for each year, starting on 01 September, here considered as the 

beginning of the hydrological year, and then averaged over the entire period; years with gaps in the data (refer to Sect. 2 for 10 

details) were completely discarded from the analysis of the specific subcatchment. 

Streamflow was represented through the following signatures: 

• average streamflow (𝜁𝜁𝑄𝑄 = 𝒒𝒒�), where 𝒒𝒒 is streamflow and the overbar represents the average over the observation 

period; 

• runoff coefficient 𝜁𝜁𝑅𝑅𝑅𝑅 = 𝒒𝒒�
𝒑𝒑�
, where 𝒑𝒑 is precipitation; 15 

• baseflow index 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵 = 𝒒𝒒(𝒃𝒃)������

𝒒𝒒�  , where 𝒒𝒒(𝒃𝒃)  represents the baseflow and was calculated using a low–pass filter as 

illustrated in (Eckhardt, 2008), Eq. (5) 

𝑞𝑞𝑡𝑡
(𝑏𝑏) = min �𝑞𝑞𝑡𝑡 ,𝜗𝜗𝑏𝑏𝑞𝑞𝑡𝑡−1

(𝑏𝑏) + 1−𝜗𝜗𝑏𝑏
2

(𝑞𝑞𝑡𝑡−1 + 𝑞𝑞𝑡𝑡)�.       (1) 

According to Eckhardt (2008), a single forward filter pass was applied but the parameter 𝜗𝜗𝑏𝑏 was chosen to be equal 

to 0.99, instead of 0.925 (suggested by Eckhardt, 2008), to highlight the low frequency component of the 20 

hydrograph. It was found that the choice of  𝜗𝜗𝑏𝑏 , although affecting the baseflow index (BFI) of individual 

subcatchments, it did not change their relative values significantly. This choice therefore had a limited influence on 

the results of the regression analysis; 

• flashiness index  (Baker et al., 2004), defined as 

𝜁𝜁𝐹𝐹𝐹𝐹 =
∑ |𝑞𝑞𝑡𝑡−𝑞𝑞𝑡𝑡−1|𝑁𝑁𝑇𝑇
𝑡𝑡=2
∑ 𝑞𝑞𝑡𝑡
𝑁𝑁𝑇𝑇
𝑡𝑡=2

;          (2) 25 

and used to describe the “responsiveness” of a catchment. 

• half streamflow period (𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻) (Court, 1962), defined as the number of days needed in order to have a cumulated 

streamflow that reaches the 50 % of the total annual streamflow; the value obtained is then normalized by the total 

number of the days in the year. This index is designed to capture the seasonality of streamflow, since it helps 
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differentiating between catchments with high streamflow during the winter and catchments with high streamflow 

during the spring.  

Climatology was represented through the following indices: 

• average precipitation 𝜓𝜓𝑃𝑃 = 𝒑𝒑�;  

• average PET 𝜓𝜓𝑃𝑃𝑃𝑃𝑃𝑃 = 𝒆𝒆𝒑𝒑𝒑𝒑𝒑𝒑�����; 5 

• aridity index 𝜓𝜓𝐴𝐴𝐴𝐴 = 𝒆𝒆𝒑𝒑𝒑𝒑𝒑𝒑������
𝒑𝒑�

. 

These indices were designed to capture different features of the time series: yearly streamflow, precipitation and PET can be 

called “magnitude” indices since they are a measure of the water flows; the remaining indices give information about the 

“shape” of the time series. 

The landscape characteristics, illustrated in Sect. 2, need to be synthetized in a numeric value (𝜉𝜉) before being used in the 10 

correlation and regression analysis. The maps were processed using GIS techniques and, for each subcatchment, numerical 

features were extracted. All the areas calculated in this analysis were normalized by their subcatchment area (𝜉𝜉𝐴𝐴) in order to 

get comparable values between subcatchments of different size. 

 In particular, the digital elevation model (DEM) was used to calculate the following topographic information: 

• average elevation (𝜉𝜉𝑇𝑇𝑇𝑇); 15 

• average slope (𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇); 

• steep areas (𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇) , with slope larger than 10°; 

• aspect, i.e. areas facing north (𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇), south (𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇) or east and west (𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇). 

The land use map was reclassified in four categories (from 22 original classes): 

• crops (𝜉𝜉𝐿𝐿𝐿𝐿); 20 

• pasture (𝜉𝜉𝐿𝐿𝐿𝐿); 

• forest (𝜉𝜉𝐿𝐿𝐹𝐹); 

• urbanized (𝜉𝜉𝐿𝐿𝐿𝐿). 

The soil map was used to quantify: 

• areas with deep soil (soil depth greater than two meters) (𝜉𝜉𝑆𝑆𝑆𝑆); 25 

• average soil depth (𝜉𝜉𝑆𝑆𝑆𝑆). 

The geology map was reclassified in three categories (from 22 original classes): 

• alluvial (𝜉𝜉𝐺𝐺𝐺𝐺); 

• consolidated (𝜉𝜉𝐺𝐺𝐺𝐺); 

• unconsolidated (𝜉𝜉𝐺𝐺𝐺𝐺). 30 
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The reclassification of the land use and of the geology maps consisted in aggregating specific classes into general classes 

(e.g. combining different types of forests into a unique forest class) with the objective of reducing the number of classes, in 

order to facilitate subsequent analyses. 

3.1.2 Correlation and regression analysis 

This analysis is aimed at identifying meteorological and landscape characteristics (𝜓𝜓 and 𝜉𝜉) that mostly control streamflow 5 

signatures (𝜁𝜁). The analysis is subdivided in different steps. 

The first step is about checking whether the Pearson correlation is an appropriate metric for representing correlation. For this 

purpose, we calculated the correlation between variables using the Pearson correlation coefficient and the Spearman’s rank 

score. The first captures linear correlation while the second is capable of measuring also non–linear (but still monotonic) 

correlation between two variables (e.g., Artusi et al., 2002). 10 

The second step in the correlation analysis is aimed at excluding non–significant influencing factors. This selection is based 

on the following two criteria: (i) the correlations have to be statistically significant, with p–value lower than 0.05; and (ii) the 

landscape characteristics (𝜉𝜉) have to cover at least 5 % of the subcatchment. The latter point is motivated by the expectation 

that landscape characteristics covering a very small fraction of the subcatchment should not have a strong influence on the 

streamflow signatures here considered. Characteristics at point (ii) could already have been excluded before the analysis. 15 

Nevertheless we thought it would still be interesting to see the complete picture of correlation between variables. 

The third step in the correlation analysis aims at distinguishing causality from mere correlation. The identification of 

causality links is based on expert judgment. For example, average streamflow may have a high correlation both with average 

altitude and with average precipitation, but if high mountain regions also have higher precipitations due to orographic 

effects, the cause of spatial streamflow variability will be precipitation and not altitude. Additionally, if more indices 20 

representing the same landscape characteristic (e.g. 𝜉𝜉𝐺𝐺𝐺𝐺, 𝜉𝜉𝐺𝐺𝐺𝐺 , and 𝜉𝜉𝐺𝐺𝐺𝐺 are complementary representations of the geology) are 

correlated with a signature, then only the one with the highest correlation is considered.  

As a last step, in order to determine a range of influencing factors on each of the signatures, we used a linear regression 

analysis with forward selection of the variables (Miller et al., 2002). In particular, for each signature, only the indices 𝜓𝜓 and 

𝜉𝜉  that exhibit causality were used in a decreasing order of correlation. Starting from the null hypothesis (none of the 25 

characteristics is necessary to explain the signatures), at each step a variable was added in the regression and the change in 

the performance was assessed evaluating the variation of the squared correlation (𝑟𝑟2) and the residual sum of squares (RSS). 

The change between these metrics in the steps of the regression was used to interpret the explanatory power of the added 

variable. 

3.1.3 Approach for informing model structure 30 

The results of the regression analysis were used to build the hydrological model; its definition involved a series of choices 

regarding the subdivision of the catchment in HRUs, the model structure, and the parameters that, in this study, were 
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motivated by the results of the regression analysis, i.e. only catchment characteristics that were found capable of explaining 

the hydrological response were used. 

3.2 Results and interpretation 

This section illustrates the results of the analysis aimed to identify influencing factors that control the spatial variability of 

streamflow signatures; Section 3.2.1 shows the spatial variability of the indices, the correlation and regression analysis and 5 

its interpretation is presented in Sect. 3.2.2. 

3.2.1 Spatial and temporal variability of catchment indices  

In Fig. 2, each boxplot shows the variability (between years) of the observed streamflow signatures. This analysis suggests 

that, based on the signatures 𝜁𝜁𝑄𝑄 , 𝜁𝜁𝑅𝑅𝑅𝑅 , 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵 , and 𝜁𝜁𝐹𝐹𝐹𝐹 , the subcatchments can be qualitatively divided in three separate groups:  

• subcatchments in the north–west hilly part (Frauenfeld and Wängi) characterized by on average lower values of 𝜁𝜁𝑄𝑄  (less 10 

than about 700 mm yr–1), 𝜁𝜁𝑅𝑅𝑅𝑅  (less than 0.60), and 𝜁𝜁𝐹𝐹𝐹𝐹 (about 0.30), and higher values of 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵  (about 0.50);  

• subcatchments in the south mountainous part (Appenzell, Jonschwil, Mogelsberg, Mosnang, and St. Gallen) that present 

completely opposite behaviour in terms of signatures values compared to the first group, with higher 𝜁𝜁𝑄𝑄  (larger, on 

average, than 1100 mm yr–1), 𝜁𝜁𝑅𝑅𝑅𝑅  (larger than 0.70), and 𝜁𝜁𝐹𝐹𝐹𝐹 , (with the average larger than 0.40), and lower 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵(around 

0.40); 15 

• subcatchments with intermediate behaviour (all the others, i.e. Andelfingen, Halden, and Herisau) that express a regime 

that is in between the other two groups. 

This combination of signatures values suggests that the subcatchments in the north–west hilly part, since they have more 

baseflow and a lower 𝜁𝜁𝐹𝐹𝐹𝐹, manifest a hydrograph that is more regular (with less short–term variations) than the other two 

groups.  20 

Based on the half streamflow period (𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻), the subcatchments can be classified in different groups: Frauenfeld, Wängi, and 

Mosnang, that on average, reach the 50 % of the total streamflow around the 45 % of the year (February); Jonschwil, St. 

Gallen, and Appenzell that reach this threshold around the 60 % of the year (April); all the others that have an intermediate 

behaviour. All the subcatchments present some outliers. These outliers can be explained based on the temporal variability of 

precipitation, which can determine that in some years the 50 % of the total streamflow is reached much earlier than on 25 

average.  

Figure 3 illustrates the same analysis, but for the meteorological indices. It is possible to observe in the precipitation (Fig. 

3a) and in the aridity index (Fig. 3c) the same patterns that are present in the streamflow (Fig. 2a); nevertheless, the ratio 

between streamflow and precipitation is not constant, as shown by 𝜁𝜁𝑅𝑅𝑅𝑅  (Fig. 2b), which is higher for wetter subcatchments. 

Precipitation, varies significantly from subcatchment to subcatchment, with an average value that has a range of variability 30 

of more than 500 mm yr–1. PET instead is generally more stable from subcatchment to subcatchment. The average value 
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oscillates of about 50 mm yr–1, with the exception Appenzell, the catchment with highest altitude, where PET is, on average, 

100 mm yr–1 lower (Fig. 3b). 

The landscape characteristics of the subcatchments (𝜉𝜉) are summarized in Fig. 4 (refer to Table 1 for the features that cannot 

be expressed as areal fraction, e.g. 𝜉𝜉𝑇𝑇𝑇𝑇, 𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇, etc.). All the subcatchments present the same aspect (𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇, 𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  and 𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇), 

mainly north (30 %). Topography (𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇  and 𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇 ), soil characteristics (𝜉𝜉𝑆𝑆𝑆𝑆  and 𝜉𝜉𝑆𝑆𝑆𝑆 ), and geology (𝜉𝜉𝐺𝐺𝐺𝐺 , 𝜉𝜉𝐺𝐺𝐺𝐺 , and 𝜉𝜉𝐺𝐺𝐺𝐺 ) 5 

present a high variability, with a difference, between subcatchments, around 40 %. The land use (𝜉𝜉𝐿𝐿𝐿𝐿 , 𝜉𝜉𝐿𝐿𝐿𝐿, 𝜉𝜉𝐿𝐿𝐿𝐿, and 𝜉𝜉𝐿𝐿𝐿𝐿) is 

relatively uniform (variation lower than 10 % between catchments) with the only large (but still limited) difference in the 

urbanized areas. There are also landscape characteristics (e.g. 𝜉𝜉𝐿𝐿𝐿𝐿  or 𝜉𝜉𝐿𝐿𝐿𝐿) that present a limited coverage over the catchment, 

lower than 15 %. 

Reducing the time scale from annual to monthly averages it is possible to note differences in seasonality between 10 

subcatchments. Figure 5 illustrates the variability of streamflow, precipitation and PET; each line represents the normalized 

(divided by the average annual value) average value through the years for a subcatchment. Although the (normalized) 

meteorological variables present similar seasonality between the subcatchments, the streamflow shows stronger variability 

between subcatchments. Based on streamflow seasonality, the subcatchments can be visually divided in two separate groups: 

subcatchments that have highest streamflow between October and March (Wängi, Frauenfeld, and Mosnang) and 15 

subcatchments that present highest streamflow during late spring and summer (particularly evident in Appenzell). These 

dynamics are similar to the ones captured by 𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻 , that shows that the catchments that reach earlier the 50 % of the 

streamflow are the same that have the highest streamflow between October and March. 

3.2.2 Influencing factors on streamflow signatures 

Table 2 shows the correlation coefficients calculated between streamflow signatures and meteorological and landscape 20 

characteristics of the subcatchments; both Pearson and Spearman’s rank correlations are reported and the values that are 

statistically significant (p–value < 0.05) are marked in bold.  

The two coefficients provide comparable results and, in particular, only a few correlations that are statistically significant 

according to the Spearman’s rank correlation are not considered significant by the Pearson correlations and, in these cases, 

their p–value is close to 0.05. For this reason, the Pearson coefficient is considered to be a good metric to detect correlation 25 

in this case and there is, therefore, no need to look for non–linearity in the following of this analysis.  

Looking at the statistically significant correlations, without any consideration regarding the presence of a causality link, 

some characteristics can be already excluded from the remaining of the analysis since they are never correlated with the 

signatures; they are the subcatchment area (𝜉𝜉𝐴𝐴 ), the aspect (𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇 , 𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 , and 𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇 ), and forest land use (𝜉𝜉𝐿𝐿𝐿𝐿 ). Other 

correlations can be excluded because, while having in some cases a low p–value, the landscape characteristic covers a 30 

limited portion of the subcatchment; this is the case of crops and urban land use (𝜉𝜉𝐿𝐿𝐿𝐿  and 𝜉𝜉𝐿𝐿𝐿𝐿). 
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The remaining correlations are then analysed and accepted (or rejected) considering their relation with other characteristics 

and the presence (or absence) of a causality link. Analysing 𝜁𝜁𝑄𝑄 , for example, it can be seen from Table 2 that it is, in a 

decreasing order, correlated to: 𝜓𝜓𝑃𝑃 (0.97), 𝜓𝜓𝐴𝐴𝐴𝐴  (–0.97), 𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇 (0.97), 𝜉𝜉𝑇𝑇𝑇𝑇  (0.97), 𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇 (0.94),  𝜉𝜉𝑆𝑆𝑆𝑆  (–0.89), 𝜓𝜓𝑃𝑃𝑃𝑃𝑃𝑃  (–0.87), 𝜉𝜉𝐺𝐺𝐺𝐺 

(–0.80), 𝜉𝜉𝐺𝐺𝐺𝐺  (0.80), 𝜉𝜉𝐺𝐺𝐺𝐺 (–0.76), and 𝜉𝜉𝑆𝑆𝑆𝑆 (–0.73). Out of these 11 correlations, some of them can be excluded because either 

they represent the same feature or because they are linked with other characteristics that are more explanatory. In particular, 5 

𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇 and 𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇 are highly correlated and they both represent the topography so only the slope (𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇) is kept. 𝜉𝜉𝑆𝑆𝑆𝑆 and 𝜉𝜉𝑆𝑆𝑆𝑆 

represent both the same feature (soil depth) and the same happens for the three types of geology (that are complementary): 

for these reasons only 𝜉𝜉𝑆𝑆𝑆𝑆 and 𝜉𝜉𝐺𝐺𝐺𝐺  are kept for following analyses. 𝜉𝜉𝑇𝑇𝑇𝑇 and 𝜓𝜓𝑃𝑃 are highly correlated and, as explained in 

Sect. 3.1.2, only the true driver (𝜓𝜓𝑃𝑃) is considered. The aridity index, finally, is a function of 𝜓𝜓𝑃𝑃 and 𝜓𝜓𝑃𝑃𝑃𝑃𝑃𝑃 . Since 𝜓𝜓𝑃𝑃 is 

already considered, only 𝜓𝜓𝑃𝑃𝑃𝑃𝑃𝑃  is included in the following analyses. 10 

The same arguments can be used also to prune the list of the statistically–significant correlations for the other signatures, 

keeping only the most correlated 𝜉𝜉 of each landscape characteristic (the first letter of the subscript of each index denotes the 

landscape characteristic that it represents). The outcomes of the causality analysis are reported in Table 2, where the 

correlations that show a causality link and are not redundant are underlined.  

The selected 𝜓𝜓 and 𝜉𝜉  are then used, in a decreasing order of correlation (the absolute value is used), in the regression 15 

analysis. This is presented in Table 3, where each sub–table contains the results of the regression between the meteorological 

and landscape characteristics and a signature; the evaluation metrics, 𝑟𝑟2  and RSS, are also reported. The following 

conclusions can be drawn: 

• in all the cases the null hypothesis (none of the features is necessary to explain the signatures) is rejected; 

• excluding 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵 , the first feature used in the regression is sufficient to reach an acceptable value of the metrics and, 20 

thus, the use of the other characteristics does not increase significantly the performance of the model; 

• when geological and topographical characteristics are used in conjunction, the evaluation metrics do not increase 

appreciably. This is probably due to the fact that they are redundant, since they present the same spatial distribution 

across the subcatchments; 

• regarding the 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵 , it can be noticed that, adding information related to the land use 𝜉𝜉𝐿𝐿𝐿𝐿 , the metrics improve 25 

substantially (+8 % for 𝑟𝑟2 and –60 % for RSS). 

These conclusions form the basis to formulate modelling guidance (Sect. 3.3). 

3.3 Guidelines for modelling 

The results of the correlation and regression analysis are, in this paper, the premise of the hydrological model building. Our 

hypothesis is that only a model that is able to account for the influencing factors that affect the streamflow signatures will be 30 

able to reproduce spatial streamflow variability. So it is necessary, at this point, to synthetize the outcomes in the form of 

guidelines for building the model. 
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1. The precipitation and, in general, all the meteorological variables are the first drivers of the hydrological variability; 

they show a statistically significant correlation with all the signatures and they are the first control on 𝜁𝜁𝑄𝑄 . For this 

reason, the hydrological model should be able to distribute the inputs across the subcatchments; doing this, the 

model is automatically incorporating information about the topography (specifically the elevation) since all the 

inputs were interpolated taking into account the effect of the elevation (Sect. 2). 5 

2. The signature 𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻  and the different monthly patterns between streamflow and meteorological inputs show a 

seasonal effect due to the presence of snow. Therefore the model should be able to use the temperature (that is 

distributed across the subcatchments) to separate the precipitation between snow and rainfall and to reproduce the 

melting process. 

3. Out of all the landscape characteristics, the ones that are more correlated are topography and geology; since they 10 

also have a similar spatial distribution, only geology should be kept because it has, overall, a higher correlation with 

the streamflow signatures. There are also other characteristics that have proven to be related with some signatures 

(e.g. land use with 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵  and 𝜁𝜁𝐹𝐹𝐹𝐹  or soil depth with 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵) but, for the sake of keeping the model as simple as possible, 

they will not be considered. 

This guidance will result into specific model decisions, described in Sect. 4.1.1 and in the selection of the model experiments 15 

of Sect. 4.1.5. 

4 Modelling 

4.1 Methods 

This section describes the approach for building and testing a semidistributed hydrological model designed to represent the 

observed streamflow and particularly the observed spatial variability of streamflow signatures. The modelling choices are 20 

explained in Sect. 4.1.1 and follow the discussion of the regression analysis presented in Sect. 3.3; the error model and the 

calibration procedure are described in Sect. 4.1.2 and 4.1.3, the metrics utilized to assess the performance are shown in Sect. 

4.1.4, and the experiments done are illustrated in Sect. 4.1.5. 

4.1.1 General structure of the hydrological model 

The need to provide simultaneous streamflow predictions at the various points within the Thur catchment requires at a 25 

minimum a subdivision into subcatchments based on the location of the gauging stations. In the spirit of semidistributed 

modelling, a common way to account for the spatial heterogeneity of hydrological behaviour is to consider a variable 

number of HRUs (see Sect. 4.1.5). Portions of the entire catchment belonging to the same HRU are supposed to have the 

same hydrological behaviour and, for this reason, are described by the same model structure and parameters set (but can 
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have different states because of spatial variability of the forcings). Specific choices for the HRUs, motivated by the results of 

the regression analysis (Sect. 3.3), are described in Sect. 4.1.5. 

The results of the regression analysis have indicated that precipitation is a dominant control on average streamflow (Sect. 

3.3, point 1). Therefore, precipitation needs to be distributed at least at the level of subcatchments. As a result, portions of 

the catchment belonging to the same HRU but located in different subcatchments will generally have different states. Using 5 

the same terminology of Fenicia et al. (2016), the smallest landscape units in which the catchment is discretized are called 

‘fields’. In this case, the total number of ‘fields’ is obtained by summing the total number of HRUs present in each 

subcatchment. 

The model was built using the modelling framework SUPERFLEX (Fenicia et al., 2011). We have chosen a unique structure 

to represent the various HRUs (as said above, this structure will generally have different parameters in order to represent the 10 

hydrological behaviour of distinct HRUs). The structure used to represent the HRUs is represented in Fig. 6 with the 

equations listed in the Appendix A. Because of the importance of snowmelt in controlling streamflow seasonality (Sect. 3.3, 

point 2), the structure includes a snow reservoir (WR). Snowmelt and rainfall are input to an unsaturated reservoir (UR), 

which determines the portion of precipitation that produces runoff. This flux is split through a fast reservoir (FR), designed 

to represent the peaks of the hydrograph, preceded by a lag function to offset the hydrograph, and a slow reservoir (SR), 15 

designed to represent baseflow. This structure is chosen to be parsimonious while general enough to reproduce typical 

hydrograph behaviour; it was tested in previous applications ( e.g., van Esse et al., 2013; Fenicia et al., 2014; Fenicia et al., 

2016) demonstrating its suitability to reproduce a wide range of catchment responses. It also resembles popular conceptual 

hydrological models such as HBV (Lindstrom et al., 1997) and HyMod (Boyle, 2003), which are shown to have wide 

applicability.  20 

4.1.2 Error model  

As commonly done in hydrological modelling (e.g., McInerney et al., 2017), we here account for uncertainties by 

considering a probabilistic model of the observations 𝑸𝑸(𝜽𝜽,𝒙𝒙), where 𝜽𝜽 is the vector of parameters and 𝒙𝒙 the model input, 

which is composed of a deterministic hydrological model 𝒉𝒉(𝜽𝜽𝒉𝒉,𝒙𝒙) (illustrated in Sect. 4.1.1) and a random residual error 

term 𝜠𝜠(𝜽𝜽𝜠𝜠)  that accounts for all data and model uncertainties (𝜽𝜽𝒉𝒉  and  𝜽𝜽𝜠𝜠  represent the hydrological and the error 25 

parameters): 

𝑧𝑧[𝑸𝑸(𝜽𝜽,𝒙𝒙); 𝜆𝜆] = 𝑧𝑧[𝒉𝒉(𝜽𝜽𝒉𝒉,𝒙𝒙); 𝜆𝜆] + 𝜠𝜠(𝜽𝜽𝜠𝜠)         (3) 

where 𝑧𝑧[𝒚𝒚; 𝜆𝜆] represent the Box–Cox transformation (Box and Cox, 1964) with parameter 𝜆𝜆 , which is used to account for 

heteroscedasticity (stabilize the variance). For 𝜆𝜆 ≠ 0:  

𝑧𝑧[𝒚𝒚; 𝜆𝜆] = 𝒚𝒚𝜆𝜆−1
𝜆𝜆

            (4) 30 

The residual error term is assumed to follow a Gaussian distribution with zero mean and variance 𝜎𝜎2 

𝜠𝜠~𝑁𝑁(0;𝜎𝜎2)            (5) 
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The error model has, therefore, two parameters (𝜆𝜆 and 𝜎𝜎2); the first was fixed to 0.5 (McInerney et al., 2017) and the second 

was inferred. 

This choice of error model (Gaussian noise applied to the Box–Cox transformation of the streamflow) allows for an explicit 

definition of the likelihood function (McInerney et al., 2017) 

𝑝𝑝(𝒒𝒒𝒐𝒐𝒐𝒐𝒐𝒐|𝜽𝜽𝒉𝒉,𝜽𝜽𝜠𝜠,𝒙𝒙) = ∏𝑧𝑧′(𝒒𝒒𝒐𝒐𝒐𝒐𝒐𝒐|𝜽𝜽𝜠𝜠)𝑓𝑓𝑁𝑁(𝜠𝜠|0;𝜎𝜎2)        (6) 5 

where 𝑓𝑓𝑁𝑁 is the Gaussian probability density function (PDF) and 𝑧𝑧′(𝒒𝒒𝒐𝒐𝒐𝒐𝒐𝒐|𝜽𝜽𝜠𝜠) is the derivative of 𝑧𝑧(𝒒𝒒𝒐𝒐𝒐𝒐𝒐𝒐,𝜽𝜽𝜠𝜠) with respect to 

𝒒𝒒 evaluated at the observed data 𝒒𝒒𝒐𝒐𝒐𝒐𝒐𝒐. Specifying Eq. (6) for the case where 𝑧𝑧(𝒒𝒒𝒐𝒐𝒐𝒐𝒐𝒐;𝜽𝜽𝜠𝜠) is defined by Eq. (4), the expression 

of the likelihood function becomes: 

𝑝𝑝(𝒒𝒒𝒐𝒐𝒐𝒐𝒐𝒐|𝜽𝜽𝒉𝒉,𝜽𝜽𝜠𝜠,𝒙𝒙) = ∏𝒒𝒒𝒐𝒐𝒐𝒐𝒐𝒐
(𝜆𝜆−1)𝑓𝑓𝑁𝑁(𝜠𝜠|0;𝜎𝜎2)         (7) 

4.1.3 Calibration  10 

Parameter calibration was performed by optimizing the parameters of the posterior distribution. According to Bayes 

equation, the posterior distribution is expressed as the product between the prior distribution and the likelihood function; 

since an uniform prior was used for the parameters, this is equivalent to maximizing the likelihood function in the defined 

parameter space; the procedure was done using a multi–start quasi–Newton method (Kavetski et al., 2007) with 20 

independent searchers. 15 

The evaluation of the model ability to reproduce streamflow was carried out in space–time validation. For this purpose, the 

time domain was divided in two periods of 12 years each (from 01 September 1981 to 01 September 1993, and from 01 

September 1993 to 01 September 2005) and the subcatchments were split in two groups (A and B), according to a spatial 

alternation (subcatchment in group A flows into a subcatchment in group B that flows into one in group A and so on); the 

subcatchments belonging to group A are Andelfingen, Herisau, Jonschwil, St. Gallen, Wängi and the ones in group B are 20 

Appenzell, Frauenfeld, Halden, Mogelsberg, Mosnang. This method implies a division of the space–time domain in four 

parts, such that the model can be calibrated in one and validated in the other three. For space–time validation, the model was 

calibrated using each group of subcatchment and each period, and validated using the other group of subcatchment and 

period. That is, the model calibrated using group A and period 1 was validated using group B and period 2, and so on for the 

other 3 combinations of subcatchments and groups. The model output in the 4 space–time validation periods was then 25 

combined, to calculate model performance using various indicators (see Sect. 4.1.4).  

4.1.4 Performance assessment 

Model performance was assessed using the following metrics: 

1. Time series metrics, which evaluate the ability of reproducing streamflow time series. The metrics used for this 

assessment are the following: 30 
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• Normalized log–likelihood (LL), that is the logarithm of Eq. (7) normalized by the number of time steps 

present in the time series. This metrics corresponds to the objective function used for model optimization. It 

can be observed that, since λ  is fixed at 0.5 in the Box–Cox transformation, model calibration is equivalent to 

maximising the Nash–Sutcliffe efficiency (NS) calculated with the square root of the streamflow. LL is not 

bounded but a higher value means a better match between two time series since, in this case, the absolute value 5 

of the residual is smaller and, thus, their PDF higher. 

• Nash–Sutcliffe efficiency 

𝑁𝑁𝑁𝑁(𝒒𝒒𝒐𝒐𝒐𝒐𝒐𝒐,𝒒𝒒𝒔𝒔𝒔𝒔𝒔𝒔) = 1 − ∑ �𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠
𝑡𝑡 −𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜

𝑡𝑡 �
2𝑇𝑇

𝑡𝑡=1

∑ �𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜
𝑡𝑡 −𝒒𝒒𝒐𝒐𝒐𝒐𝒐𝒐�������

2𝑇𝑇
𝑡𝑡=1

        (8) 

Which is often used in hydrological applications provides a sense of general quality of the simulations. NS is 

bounded between −∞ and 1, with 1 meaning a perfect match. 10 

2. Signature metrics, which determine the ability of reproducing streamflow signatures (𝜁𝜁) presented in the regression 

analysis part (Sect. 3.1.1), that is, of average streamflow (𝜁𝜁𝑄𝑄), runoff coefficient (𝜁𝜁𝑅𝑅𝑅𝑅 ), baseflow index ( 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵  ), 

flashiness index ( 𝜁𝜁𝐹𝐹𝐹𝐹 ), and half streamflow period (𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻 ). The accordance between simulated and observed 

signatures was assessed both visually and using the Pearson correlation. 

This set of metrics, together with the fact that they are calculated in space time validation (Sect. 4.1.3), provides a 15 

comprehensive assessment of model performance. 

4.1.5 Model experiments 

Using the model structure described in Sect. 4.1.1, several model variants are compared. The main motivations for such 

comparisons are as follows: 

• verify that models that account for the influencing factors identified through the regression analysis indeed lead 20 

to an improved representation of streamflow spatial variability; 

• provide a mechanistic interpretation of how influencing factors affect streamflow, which cannot be achieved by 

regression analysis; 

• get some insights on the relationship between model complexity and performance. 

The model variants and their specific rationale are described below:  25 

• In order to verify the effect of spatial distribution of landscape properties, we constructed a reference model 

with a single HRU, called M1, (i.e. no spatial distribution of landscape properties); in this case only the input 

variability (the catchment is still divided in subcatchments) is considered. 

• In order to verify that geology controls streamflow variability (see Sect. 3.3, point 3), particularly by 

influencing baseflow conditions, a two HRUs model, called M2, was implemented, dividing the three geology 30 
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classes in unconsolidated, for the first HRU, and consolidated and alluvial, for the second HRU (see Sect. 2 and 

Fig. 1d). 

• In order to verify that eventual improvements in performance brought by M2 compared to M1 are not just due 

to increase in complexity, we implemented a two HRUs model, called M3, using the land use to discretize the 

domain. The land use classes were arbitrarily defined so that the first HRU contains forest and crops and the 5 

second occupies the rest of the catchment.  

The total number of the calibrated parameters depends on the number of HRUs and it was nine in the first experiment (Table 

A1) and 13 in the other two, where five parameters were linked between different HRUs; those parameters are: 𝐶𝐶𝑒𝑒  that 

governs the evapotranspiration, 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑂𝑂𝑂𝑂  and 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝐼𝐼  that control the routing in the river network, 𝑘𝑘𝑊𝑊𝑊𝑊 that regulates the outflow of 

the snow reservoir, and 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈  that determines the behaviour of the unsaturated reservoir. 10 

4.2 Results and interpretation 

This section presents the results of the modelling experiments. Section 4.2.1 illustrates model results in terms of hydrograph 

metrics. Section 4.2.2 presents model results in terms of signatures. An interpretation of the results, including a comparison 

with the conclusions of the regression analysis, is given in Sect. 4.2.3. 

4.2.1 Model performance in terms of hydrograph metrics 15 

Figure 7a shows the values of the likelihood function (corresponding to the calibration objective function) for the three 

models in calibration and validation. It can be observed that during calibration, M1, which has the lowest number of 

calibration parameters, has the lowest likelihood value of the three, indicating lowest performance, whereas M2 and M3 have 

similar higher likelihood values. This behaviour continues in time validation, with M2 and M3 that outperform M1. In space 

and space–time validation, however, M3 has the lowest likelihood value of the three, whereas M1 and M2 limit their 20 

decrease in performance, having, respectively, the second and the first value of likelihood. 

The likelihood function represents an aggregate metric of model performance; in order to get a sense of appreciation of 

model fit on individual subcatchments, Fig. 7b reports the values of Nash Sutcliffe efficiency in space time validation for 

each of the subcatchments. On average, M2 has the best performance of all models (NS = 0.79), followed by M1 (NS = 0.78) 

and M3 (NS = 0.77). M3 has the highest variability of performance, with NS values between 0.58 and 0.86. M1 and M2 have 25 

similar spread of NS values, ranging from 0.69 to 0.85 for M1 and from 0.73 to 0.87 for M2. Therefore, M1 and M2 have a 

more stable performance across subcatchments than M3. M3 obtains a significantly worse performance than the other 2 

models on Mosnang, where it reaches a NS value of 0.58 (M1 and M2 have values of 0.69 and 0.73 respectively). 

It can also be observed that M2 is generally better than M1, with NS values that are higher or approximately equal except for 

the subcatchments Andelfingen and Halden, where the NS is slightly worse (however still higher than 0.80). M3 is clearly 30 
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better than M1 on Andelfingen, Frauenfeld and Wängi, and clearly worse on Herisau and Mosnang. In particular, in 

Mosnang M3 reaches the worst performance of all models on all subcatchments.  

4.2.2 Model performance in terms of signature metrics 

Figure 8 compares the observed and simulated signatures for M1. Figure 9 and Fig. 10 show the same analysis for M2 and 

M3 respectively. The analysis is presented for space–time validation only. Each colour represents a different subcatchment 5 

and each dot a year; the red dashed line has a 45 ° slope and it is where the dots should align in case of perfect simulation 

results. The Pearson correlation coefficient is also reported and gives information about the degree of linear dependency 

between the two variables. It is important to underline that the models have not been calibrated using any of these signatures 

as objective function and, therefore, they represent an independent evaluation metric. 

M1 (Fig. 8) represents relatively accurately 𝜁𝜁𝑄𝑄 , 𝜁𝜁𝑅𝑅𝑅𝑅 , and  𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻 (𝑟𝑟 is 0.96, 0.83, and 0.92 for 𝜁𝜁𝑄𝑄 , 𝜁𝜁𝑅𝑅𝑅𝑅 , and 𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻 respectively). 10 

On the other hand, the model shows clear deficiencies in matching the other signatures (𝑟𝑟 is 0.20 and 0.37 for  𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵  and 𝜁𝜁𝐹𝐹𝐹𝐹 

respectively): the points cloud is quite dispersed meaning that the model is not able to capture the variability between years 

and subcatchments. Moreover, the dots align (regression line not plotted to avoid an overcrowded plot) almost vertically, 

implying that the simulated values have a range of variability that is definitely smaller than the measured data. 

M2 (Fig. 9) has a performance similar to M1 in terms of the signatures 𝜁𝜁𝑄𝑄 , 𝜁𝜁𝑅𝑅𝑅𝑅 , and 𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻 (𝑟𝑟 is 0.96, 0.88, and 0.92 for 𝜁𝜁𝑄𝑄 , 15 

𝜁𝜁𝑅𝑅𝑅𝑅 , and 𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻 respectively). However, in terms of 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵 , the representation is much better than M1 (𝑟𝑟 equal to 0.83 vs 0.20 for 

M1), with the points cloud that is more aligned on the diagonal, indicating not only correlation but also a good match of the 

absolute values. Compared to M1, finally, 𝜁𝜁𝐹𝐹𝐹𝐹 presents a much better alignment (𝑟𝑟 is 0.88), but the points are still far from 

the diagonal, indicating a poor agreement of the absolute values; in particular, the model tends to consistently underestimate 

𝜁𝜁𝐹𝐹𝐹𝐹 .  20 

M3 (Fig. 10), finally, has a performance that is in between the other two models; the representation of the signatures  𝜁𝜁𝑄𝑄 , 𝜁𝜁𝑅𝑅𝑅𝑅 , 

and 𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻 is similar to the one achieved with the other two models, with 𝑟𝑟 that is equal to 0.96, 0.84, and 0.90 respectively. 

On the other hand, the model misrepresents the other signatures (𝑟𝑟 is 0.46 and 0.44 for  𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵  and 𝜁𝜁𝐹𝐹𝐹𝐹  respectively): the point 

clouds, in this case, are more similar to the one obtained with M1, that is, they are more dispersed and aligned almost 

vertically.  25 

4.2.3 Interpretation of hydrological model results 

The results of the hydrological model experiments indicate that accounting for the influencing factors identified through the 

regression analysis indeed lead to an improved representation of streamflow spatial variability. The results of M1 show that 

accounting for the spatial heterogeneity of the inputs alone is sufficient to achieve to a good accuracy signatures of water 

balance, with 𝑟𝑟 of 0.96 for average streamflow 𝜁𝜁𝑄𝑄 . More complex models with more HRUs and more parameters do not 30 
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result in any improvement in reproducing the average streamflow signature. The same considerations can be made also for 

𝜁𝜁𝑅𝑅𝑅𝑅  and 𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻 that are well represented by all the three models. 

M2 determines a large improvement in matching signatures of baseflow variability. The ability of fitting 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵  goes from 0.20 

for M1 to 0.83 for M2. This result confirms that geology influences spatial variability of quickflow vs baseflow partitioning, 

as indicated by regression analysis. 5 

M3 reassures that the relatively good results of M2 are not just due to increasing complexity. Although this model performs 

slightly better than the M1 in terms of matching signatures such as of 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵  and 𝜁𝜁𝐹𝐹𝐹𝐹 , M2 is still much better (e.g. the Pearson 

coefficient for 𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵  is 0.83 for M2 and 0.46 for M3). 

Overall, distributing the inputs is sufficient to get good performance metrics, water balance, and seasonality, confirming the 

fact that the precipitation rate and the partitioning between rainfall and snow are the first controllers on these hydrograph 10 

characteristics, but, if we want to capture also hydrograph shape, described by the other signatures, the discretization of the 

catchment in HRUs is necessary. This discretization has to be carefully made and a preliminary analysis to understand 

dominant influencing factors on signatures can help in this decision. As shown in Fig. 10, if we use characteristics that are 

not strongly correlated with the signatures (e.g. land use) the results are worse than if we choose characteristics that show a 

correlation with signatures (e.g. geology). M2 is capable of capturing the signatures not just because it is more complex than 15 

M1, but because it incorporates the causality link between the geology and the streamflow signatures in its structure. 

The underestimation of 𝜁𝜁𝐹𝐹𝐹𝐹, which applies to all the models (including  M2), has partly to do with the fact that in our analysis 

observed signatures are compared with the output of the deterministic model without adding the error term. This results in a 

hydrograph that is more regular that the probabilistic one resulting in a lower  𝜁𝜁𝐹𝐹𝐹𝐹 . Although conceptually it is more 

appropriate to compare the observations to the probabilistic simulations, given that our error model is relatively simple it 20 

would have resulted in unrealistic signatures. The development of error models that preserve the signatures of the 

observations is a subject of current research (e.g., Ammann et al., 2018). 

5 General discussion 

Explaining the spatial variability observed in catchment hydrological behaviour by identifying the most important controls 

on water fluxes and pathways is a major focus of catchment hydrology and a central theme in classification studies (e.g., 25 

McDonnell and Woods, 2004; Wagener et al., 2007). A common approach for interpreting the spatial variability of 

catchment responses is through regression based analyses, which seek correlations between meteorological or catchment 

characteristics and streamflow signatures (e.g., Lacey and Grayson, 1998; Bloomfield et al., 2009).  One of the issues with 

this approach is that correlation does not always imply causality, and the presence of multiple correlated variables can 

obscure process interpretation. 30 

In this study, we combine regression analysis for identifying dominant influencing factors on streamflow signatures with 

hydrological modelling, by using the interpretation of the regression analysis as an inspiration for model structure design. 

The combination of regression analysis on streamflow signatures and hydrological modelling is beneficial because on one 
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hand, the speculations on dominant processes resulting from the regression analyses can be verified in the modelling process. 

Specifically, we developed model experiments to test the influence of precipitation spatial distribution on streamflow 

average and seasonality, and the influence of geology on quickflow vs baseflow partitioning. On the other hand, model 

building benefits from guidance resulting from preliminary regression analysis. The construction of a distributed model 

requires several decisions (e.g., Fenicia et al., 2016), including how to “break–up” the catchment in a meaningful way, and 5 

preliminary regression analysis can motivate some of these decisions. For example, the HRUs defined based on geology, as 

suggested by regression analysis resulted in better model performance than HRUs based on land use, particularly in the 

representation of streamflow signatures. 

Our results on the Thur catchment with respect to the effect of meteorological inputs on average streamflow and of the 

geology on baseflow index are in general agreement with previous work. Kuentz et al. (2017) made a classification study 10 

over more than 40000 catchments across all Europe (of which almost 2700 are gauged) and found that the rainfall is the first 

controller of the average streamflow, geology controls the BFI, topography the FI, and, for most of the cases, land use is the 

second controller of them; Bloomfield et al. (2009) used a linear regression model and linked the lithology of the Thames 

Basin (UK) with the BFI; Lacey and Grayson (1998) noted that geology controls the BFI in two ways, storing the water and 

impacting the soil formations; Fenicia et al. (2016) compared different model structures and catchment discretization 15 

methods in the Attert Basin (Luxemburg) and discovered that the best model was the one that incorporates a spatial 

representation of the meteorological inputs and of the geology. 

On the other hand, this general tendency should not be generalized to all places. For example, Mazvimavi et al. (2005) found 

that geology was not important for the BFI, as in their case study the aquifer was deep and disconnected from the river. 

Bouaziz et al. (2018) found a strong influence of regional groundwater flow in the Meuse catchment which altered the water 20 

balance. 

One of the main limitations of this work is the restricted number of catchments involved and the limited spatial extension of 

the study. For this reason, it is difficult to generalize the results to other climatic regions. The subcatchments belong all to the 

same region and the landscape and climatic characteristics, while varying substantially within the basin, can still be quite 

different from characteristics found elsewhere.  25 

The limited number of catchments involved in this study (only 10) can also pose some problems with the use of techniques 

such as linear regression with multiple features, which can lead to overfit. Another limitation in the regression study is that 

linear or monotonic correlations have been investigated while other forms of relationship, including the mutual interaction 

between various influencing factors, have been neglected. This can lead to the exclusion of characteristics that are indirectly 

related to the streamflow signatures. 30 
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6 Conclusion 

In this study, we presented a methodology for the construction of a semidistributed hydrological model where model 

decisions, instead of being made a–priori, are informed by preliminary regression analysis on streamflow signatures. Besides 

providing guidance to model development, the proposed approach is useful in the fact that modelling can be used to test 

specific hypotheses on dominant processes resulting from regression analysis.  5 

Our analysis is applied to the Thur catchment, with the objective of understanding the main controls on streamflow spatial 

variability. The main findings can be summarized in the following points: 

• there is a large spatial variability between the subcatchments of the Thur catchment in terms of various 

characteristics of the hydrographs reflecting multiple temporal scales: yearly, seasonal and event scale; 

• meteorological variables, especially the precipitation, are the main controls the average yearly values and 10 

seasonality, whereas they don’t have a great effect on the shape of the hydrograph in response to specific rainfall 

events; 

• the shape of the hydrograph in response to rainfall events is mainly controlled by the catchment characteristics with 

the geology that plays the main role. Higher proportion of consolidated material has an influence on the baseflow vs 

quickflow portioning, causing lower baseflow and higher peaks; 15 

• only hydrological models that are able to reflect spatial variability of precipitation and difference in hydrological 

behaviour between geologies can correctly represent the streamflow signatures considered in this study; 

• the causality links found by the regression analysis are used and confirmed by the hydrological model. 

The relatively good performance obtained in space–time validation suggests that the proposed approach could be used for 

the prediction of the streamflow in other ungauged locations within the Thur catchment. The method proposed uses data that 20 

is commonly available in many gauged catchments (e.g. meteorological data, streamflow measurements, and maps of 

elevation, geology, land use, and soil); therefore, it is easily transferable to other locations.  

Appendix 

Appendix A: Hydrological model details 

A.1 Model equations 25 

The equations of the model are listed in this appendix; the model structure in presented in Fig. 6. Table A1 contains the 

model parameters with the range of variability used in calibration, Table  A2 lists the water–budget equations, Table A3 and 

A4 present the functions and the constitutive functions used. 
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Figure 1: Landscape characteristics of the Thur catchment: (a) subdivision in subcatchments, river network, and gauging stations; 
(b) elevation map; (c) land use map; (d) simplified geology map; (e) soil depth map; (f) slope map (derived from the elevation 
map). 
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Figure 2: Interannual variability of the streamflow signatures of the subcatchments; the catchments are sorted according to their 
mean elevation and the names are abbreviated using the first three letters. 

 
Figure 3: Interannual variability of the meteorological inputs of the subcatchments. 
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Figure 4: Variability of the landscape characteristics between the subcatchments. Characteristics that are not presented in this 
figure are reported in Table 1 

 
Figure 5: Monthly variability of streamflow (a), precipitation (b) and potential evapotranspiration (c). The values are normalized 5 
by the annual average value of the variable for each subcatchment since here the objective is to analyse the monthly distribution 
and not the actual magnitude. 
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Figure 6: Schematic representation of the model structure used for the HRUs in all the model configurations. The symbols and the 
governing equations are reported in Appendix A 
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Figure 7: Normalized log–likelihood (a) and Nash–Sutcliffe efficiency (b) for the three model configurations. The upper plot (a) 
reports the variation between calibration and validation of the average of the 10 subcatchments; the lower plot (b) shows the 
variation between subcatchments during space–time validation.  
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Figure 8: Single HRU model. Comparison between observed and simulated signatures in space-time validation (average 
streamflow (a), runoff coefficient (b), baseflow index (c), flashiness index (d), and half streamflow period (e)). Each dot represents 
a year and each colour a subcatchment. The red dashed line has a 45 ° slope and represents the line where all the points should 
align in case of perfect match between simulated and observed signatures. The Pearson correlation coefficient (𝒓𝒓) is also reported. 5 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-102
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 8 March 2019
c© Author(s) 2019. CC BY 4.0 License.



32 
 

  

Figure 9: Two HRUs model based on geology. Comparison between observed and simulated signatures in space-time validation 
(see caption of Fig. 8). 
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Figure 10: Two HRUs model based on land use. Comparison between observed and simulated signatures in space-time validation 
(see caption of Fig. 8). 
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Tables 

Table 1: Landscape characteristics of the catchments. Only features that are not presented in the plots are reported in this table. 

 Index 

Code (a) Upstream 

catchments 

Total 

area 

[km2] 

Average 

elevation 

[m a.s.l.] 

Average 

slope 

[°] 

Average 

Soil 

depth 

[m] 

Andelfingen 1 2044 2 – 10 1702 770 13.32 1.30 

Appenzell 2 2112 – 74.4 1256 25.23 0.56 

Frauenfeld 3 2386 10 213 597 9.70 1.48 

Halden 4 2181 2, 3, 5 – 10 1085 908 16.87 1.10 

Herisau 5 2305 – 16.7 829 15.44 1.32 

Jonschwil 6 2303 7, 8 493 1021 20.66 0.93 

Mogelsberg 7 2374 – 88.1 956 19.77 1.17 

Mosnang 8 2414 – 3.19 794 15.68 1.00 

St. Gallen 9 2468 2 261 1042 19.72 1.03 

Wängi 10 2126 – 80.2 652 12.49 1.32 
(a) Code of the gauging station, as defined by the Federal Office for the Environment FOEN 
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Table 2: Correlation coefficients (Pearson and Spearman’s rank correlation) between streamflow signatures (columns) and 
meteorological and landscape characteristics (rows) of the catchments. Correlations that are statistically significant (p–value < 
0.05) are marked in bold in the table. Correlations that are interpreted to represent causality are underlined (this analysis has 
been done only for the Pearson correlation). 

 Pearson correlation Spearman’s rank correlation 

 𝜁𝜁𝑄𝑄  𝜁𝜁𝑅𝑅𝑅𝑅  𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵  𝜁𝜁𝐹𝐹𝐹𝐹 𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻 𝜁𝜁𝑄𝑄  𝜁𝜁𝑅𝑅𝑅𝑅  𝜁𝜁𝐵𝐵𝐵𝐵𝐵𝐵  𝜁𝜁𝐹𝐹𝐹𝐹 𝜁𝜁𝐻𝐻𝐻𝐻𝐻𝐻 

Yearly P (𝜓𝜓𝑃𝑃) 0.97 0.88 –0.66 0.71 0.89 0.99 0.76 –0.62 0.62 0.92 

Yearly PET (𝜓𝜓𝑃𝑃𝑃𝑃𝑃𝑃) –0.87 –0.73 0.39 –0.49 –0.96 –0.95 –0.70 0.50 –0.50 –0.95 

Aridity index (𝜓𝜓𝐴𝐴𝐴𝐴) –0.97 –0.89 0.64 –0.70 –0.93 –0.98 –0.70 0.54 –0.54 –0.95 

Area (𝜉𝜉𝐴𝐴) –0.12 –0.10 0.23 –0.34 0.20 0.03 –0.33 0.22 –0.42 0.27 

Elevation (𝜉𝜉𝑇𝑇𝑇𝑇) 0.97 0.87 –0.61 0.66 0.90 0.99 0.76 –0.62 0.62 0.92 

Slope (𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇) 0.97 0.89 –0.65 0.68 0.84 0.98 0.78 –0.70 0.61 0.82 

Steep (𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇) 0.94 0.94 –0.84 0.88 0.66 0.92 0.78 –0.77 0.75 0.70 

South (𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇) 0.03 0.17 –0.58 0.44 –0.42 0.09 0.12 –0.65 0.54 –0.10 

East/west (𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) –0.14 –0.23 0.58 –0.46 0.25 –0.08 –0.26 0.41 –0.43 0.04 

North (𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇) 0.09 –0.08 0.51 –0.36 0.56 0.14 0.07 0.44 –0.24 0.39 

Crops (𝜉𝜉𝐿𝐿𝐿𝐿) –0.91 –0.86 0.85 –0.85 –0.62 –0.89 –0.73 0.76 –0.77 –0.70 

Pasture (𝜉𝜉𝐿𝐿𝐿𝐿) 0.21 0.37 –0.74 0.66 –0.25 0.33 0.41 –0.84 0.87 0.08 

Forest (𝜉𝜉𝐿𝐿𝐿𝐿) –0.01 –0.15 0.19 –0.30 0.22 0.04 –0.42 0.12 –0.38 0.14 

Urban (𝜉𝜉𝐿𝐿𝐿𝐿) –0.6 –0.53 0.70 –0.52 –0.34 –0.59 –0.60 0.84 –0.72 –0.28 

Deep soil (𝜉𝜉𝑆𝑆𝑆𝑆) –0.73 –0.76 0.70 –0.63 –0.31 –0.64 –0.76 0.71 –0.60 –0.37 

Soil depth (𝜉𝜉𝑆𝑆𝑆𝑆) –0.89 –0.83 0.58 –0.59 –0.67 –0.84 –0.88 0.72 –0.65 –0.62 

Alluvial (𝜉𝜉𝐺𝐺𝐺𝐺) –0.80 –0.87 0.85 –0.92 –0.52 –0.52 –0.78 0.70 –0.87 –0.25 

Consolidated (𝜉𝜉𝐺𝐺𝐺𝐺) 0.80 0.85 –0.89 0.92 0.38 0.65 0.73 –0.90 0.87 0.28 

Unconsolidated (𝜉𝜉𝐺𝐺𝐺𝐺) –0.76 –0.81 0.86 –0.88 –0.32 –0.65 –0.73 0.90 –0.87 –0.28 
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Table 3: Results of the linear regression with forward selection based on the results of the Pearson correlation. Each sub–table 
represents a hydrological signature and reports the coefficients of the regression and the evaluation metrics. 

 𝜻𝜻𝑸𝑸 

Intercept 2.93 –2.66 –1.42 –0.87 –4.43 1.75 

𝜓𝜓𝑃𝑃 – 1.32 0.73 0.89 1.33 0.66 

𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇 – – 0.07 0.03 0.00 0.00 

𝜉𝜉𝑆𝑆𝑆𝑆 – – – –0.44 –0.51 –0.40 

𝜓𝜓𝑃𝑃𝑃𝑃𝑃𝑃  – – – – 1.42 –1.37 

𝜉𝜉𝐺𝐺𝐺𝐺  – – – – – 1.27 

𝒓𝒓𝟐𝟐 0.00 0.95 0.96 0.96 0.96 0.98 

RSS 5.18 0.26 0.23 0.21 0.19 0.12 

 𝜻𝜻𝑹𝑹𝑹𝑹 

Intercept 0.68 0.32 0.55 0.68 0.74 

𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇 – 0.57 0.43 0.28 0.23 

𝜓𝜓𝐴𝐴𝐴𝐴  – – –0.36 –0.40 –0.20 

𝜉𝜉𝐺𝐺𝐺𝐺 – – – –0.68 –0.76 

𝜉𝜉𝑆𝑆𝑆𝑆 – – – – –0.09 

𝒓𝒓𝟐𝟐 0.00 0.89 0.91 0.92 0.94 

RSS 0.091 0.010 0.009 0.007 0.006 

 𝜻𝜻𝑩𝑩𝑩𝑩𝑩𝑩 

Intercept 0.41 0.64 0.64 0.86 0.94 0.93 

𝜉𝜉𝐺𝐺𝐺𝐺  – –0.29 –0.28 0.19 0.20 0.19 

𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇 – – –0.01 –0.36 –0.40 –0.38 

𝜉𝜉𝐿𝐿𝐿𝐿 – – – –0.61 –0.68 –0.68 

𝜉𝜉𝑆𝑆𝑆𝑆 – – – – –0.06 –0.06 

𝜓𝜓𝐴𝐴𝐴𝐴  – – – – – 0.02 

𝒓𝒓𝟐𝟐 0.00 0.80 0.80 0.92 0.93 0.93 

RSS 0.025 0.005 0.005 0.002 0.002 0.002 

 𝜻𝜻𝑭𝑭𝑭𝑭 

Intercept 0.42 0.09 0.09 0.46 0.21 

𝜉𝜉𝐺𝐺𝐺𝐺  – 0.42 0.37 0.76 0.35 

𝜉𝜉𝑇𝑇𝑇𝑇𝑇𝑇 – – 0.05 –0.58 –0.17 

𝜓𝜓𝐴𝐴𝐴𝐴  – – – –0.71 –0.48 
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𝜉𝜉𝐿𝐿𝐿𝐿 – – – – 0.37 

𝒓𝒓𝟐𝟐 0.00 0.85 0.85 0.89 0.91 

RSS 0.048 0.007 0.007 0.005 0.004 

 𝜻𝜻𝑯𝑯𝑯𝑯𝑯𝑯 

Intercept 0.53 1.22 1.14 1.73 1.53 

𝜓𝜓𝑃𝑃𝑃𝑃𝑃𝑃  – –0.43 –0.35 –0.46 –0.43 

𝜓𝜓𝐴𝐴𝐴𝐴  – – –0.12 –0.64 –0.53 

𝜉𝜉𝑇𝑇𝑇𝑇 – – – –2.5e–4 –1.7e–4 

𝜉𝜉𝑆𝑆𝑆𝑆 – – – – 0.03 

𝒓𝒓𝟐𝟐 0.00 0.93 0.93 0.97 0.97 

RSS 0.020 0.001 0.001 6.1e–4 5.9e–4 
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Table A1: hydrological model parameters with range of variation 

Parameter Unit Component Range of variability 

𝐶𝐶𝑒𝑒 − UR 0.1 – 3.0 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈  𝑚𝑚𝑚𝑚 UR 0.1 – 500.0 

𝑘𝑘𝑊𝑊𝑊𝑊 𝑑𝑑−1 WR 0.1 – 10.0 

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐼𝐼𝐼𝐼  𝑑𝑑 Network lag 0.5 – 10.0 

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑂𝑂𝑂𝑂  𝑑𝑑 Network lag 0.5 – 10.0 

𝐷𝐷 − Structure 0.0 – 1.0 

𝑘𝑘𝐹𝐹𝐹𝐹 𝑑𝑑−1 FR 10–6 – 10.0 

𝑘𝑘𝑆𝑆𝑆𝑆 𝑑𝑑−1 SR 10–6 – 1.0 

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑙𝑙𝑙𝑙𝑙𝑙  𝑑𝑑 Structure lag 1.0 – 20.0 
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Table A2: Water–budget equations (see model schematic in Figure 6) 

Component Equation 

WR 𝑑𝑑𝑆𝑆𝑊𝑊𝑊𝑊

𝑑𝑑𝑑𝑑
= 𝑃𝑃𝑊𝑊𝑊𝑊 − 𝑄𝑄𝑊𝑊𝑊𝑊  

UR 𝑑𝑑𝑆𝑆𝑈𝑈𝑈𝑈
𝑑𝑑𝑑𝑑

= 𝑃𝑃𝑈𝑈𝑈𝑈 − 𝑄𝑄𝑈𝑈𝑈𝑈 − 𝐸𝐸𝑈𝑈𝑈𝑈  

Lag 𝑄𝑄𝑈𝑈𝑈𝑈 = 𝑃𝑃𝑆𝑆𝑆𝑆 + 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙 

SR 𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑

= 𝑃𝑃𝑆𝑆𝑆𝑆 − 𝑄𝑄𝑆𝑆𝑆𝑆  

FR 𝑑𝑑𝑆𝑆𝑊𝑊𝑅𝑅

𝑑𝑑𝑑𝑑
= 𝑃𝑃𝐹𝐹𝐹𝐹 − 𝑄𝑄𝐹𝐹𝐹𝐹  

Outflow 𝑄𝑄 = 𝑄𝑄𝐹𝐹𝐹𝐹 + 𝑄𝑄𝑆𝑆𝑆𝑆  
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Table A3: Constitutive functions of the model. Refer to Table A4 for the definition of the functions 𝒇𝒇. The calibrated parameters 
are marked in bold 

Component Equation 

WR(a) 𝑃𝑃𝑊𝑊𝑊𝑊 = �𝑃𝑃 𝑖𝑖𝑖𝑖 𝑇𝑇 < 0
0 𝑖𝑖𝑖𝑖 𝑇𝑇 > 0 

WR(b) 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚
𝑊𝑊𝑊𝑊 = � 0 𝑖𝑖𝑖𝑖 𝑇𝑇 < 0

𝒌𝒌𝑾𝑾𝑾𝑾𝑇𝑇 𝑖𝑖𝑖𝑖 𝑇𝑇 > 0 

WR 𝑄𝑄𝑊𝑊𝑊𝑊 = 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚
𝑊𝑊𝑊𝑊 𝑓𝑓𝑒𝑒(𝑆𝑆𝑊𝑊𝑊𝑊|2) 

UR 𝑆𝑆𝑈𝑈𝑈𝑈����� =
𝑆𝑆𝑈𝑈𝑈𝑈
𝑺𝑺𝒎𝒎𝒎𝒎𝒎𝒎𝑼𝑼𝑼𝑼  

UR 𝐸𝐸𝑈𝑈𝑈𝑈 = 𝑪𝑪𝒆𝒆(𝑃𝑃𝑃𝑃𝑃𝑃)𝑓𝑓𝑚𝑚(𝑆𝑆𝑈𝑈𝑈𝑈|0.01) 

UR 𝑄𝑄𝑈𝑈𝑈𝑈 = 𝑃𝑃𝑈𝑈𝑅𝑅𝑓𝑓𝑝𝑝(𝑆𝑆𝑈𝑈𝑈𝑈�����|2) 

SR 𝑃𝑃𝑆𝑆𝑆𝑆 = 𝑫𝑫𝑄𝑄𝑈𝑈𝑈𝑈  

SR 𝑄𝑄𝑆𝑆𝑆𝑆 = 𝒌𝒌𝑺𝑺𝑺𝑺𝑆𝑆𝑆𝑆𝑆𝑆 

Lag(c) 𝑃𝑃𝐹𝐹𝐹𝐹 = �𝑃𝑃𝐿𝐿 ∗ ℎ𝑙𝑙𝑙𝑙𝑙𝑙�(𝑡𝑡) 

Lag 
ℎ𝑙𝑙𝑙𝑙𝑙𝑙 = �2𝑡𝑡 �𝒕𝒕𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓

𝒍𝒍𝒍𝒍𝒍𝒍 �
2

⁄ 𝑖𝑖𝑖𝑖 𝑡𝑡 < 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑙𝑙𝑙𝑙𝑙𝑙

0 𝑖𝑖𝑖𝑖 𝑡𝑡 > 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑙𝑙𝑙𝑙𝑙𝑙

 

FR 𝑄𝑄𝐹𝐹𝐹𝐹 = 𝒌𝒌𝑭𝑭𝑭𝑭𝑆𝑆𝐹𝐹𝐹𝐹3  

Lags in the network(c) 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 = �𝑄𝑄𝑖𝑖𝑖𝑖 ∗ ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛�(𝑡𝑡) 

Lags in the network 

ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛 =

⎩
⎪
⎨

⎪
⎧ 2𝑡𝑡 �𝒕𝒕𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓

𝑶𝑶𝑶𝑶/𝑰𝑰𝑰𝑰�
2

⁄ 𝑖𝑖𝑖𝑖 𝑡𝑡 < 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑂𝑂𝑂𝑂/𝐼𝐼𝐼𝐼

�1 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑂𝑂𝑂𝑂/𝐼𝐼𝐼𝐼⁄ � �1 − ��𝑡𝑡 − 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑂𝑂𝑂𝑂/𝐼𝐼𝐿𝐿� 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑂𝑂𝑂𝑂/𝐼𝐼𝐼𝐼� ��  𝑖𝑖𝑖𝑖 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑂𝑂𝑂𝑂/𝐼𝐼𝐼𝐼 < 𝑡𝑡 < 2𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑂𝑂𝑂𝑂/𝐼𝐼𝐼𝐼

0 𝑖𝑖𝑖𝑖 𝑡𝑡 > 2𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑂𝑂𝑂𝑂/𝐼𝐼𝐼𝐼

 

(a) This equation is smoothed using logistic scheme, Eq. (8) in Kavetski and Kuczera (2007), with smoothing parameter 

𝑚𝑚𝑃𝑃 = 1.5°𝐶𝐶 
(b) This equation is smoothed using logistic scheme, Eq. (13) in Kavetski and Kuczera (2007) , with smoothing parameter 5 

𝑚𝑚𝑀𝑀 = 1.5°𝐶𝐶 
(c) The operator ∗ denotes the convolution operator, smoothed according to Kavetski and Kuczera (2007) 
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Table A4: Constitutive functions 

Function Name 

𝑓𝑓𝑒𝑒(𝑥𝑥|𝜃𝜃) = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑥𝑥 𝜃𝜃⁄ ) Tessier function. Note that 𝑓𝑓𝑒𝑒(𝑥𝑥|𝜃𝜃) → 1 as 𝑥𝑥 → ∞ 

𝑓𝑓𝑝𝑝(𝑥𝑥|𝜃𝜃) = 𝑥𝑥𝜃𝜃 Power function 

𝑓𝑓𝑚𝑚(𝑥𝑥|𝜃𝜃) =
𝑥𝑥(1 + 𝜃𝜃)
𝑥𝑥 + 𝜃𝜃

 
Monod–type kinetics, adjusted so that 𝑓𝑓𝑚𝑚(1|𝜃𝜃) = 1 
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